CAPTER IV
DATA ANALYISIS,
FINDING and DISCUSSION
4.1 The Scores of Pre – Test and Post – Test
NO
|
The Names of Student
|
Pre – Test (x)
|
Post – Test (y)
|
1
|
Ai Elis Hilmi
|
5
|
5
|
2
|
Ai Jamilah
|
4
|
6
|
3
|
Andrian
|
4
|
6,5
|
4
|
Ahmad Hapid
|
5
|
5,5
|
5
|
Asep Rahmat
|
5
|
5,5
|
6
|
Cecep Rian
|
7
|
7
|
7
|
Dede Joharudin
|
4
|
4,5
|
8
|
Devi Azhari
|
6
|
8,5
|
9
|
Dede siti Maryam
|
7
|
8,5
|
10
|
Encep Muhammad
|
6
|
7
|
11
|
Firmansyah
|
6
|
6
|
12
|
Fitriyani
|
6
|
7
|
13
|
Herdiana
|
6
|
6,5
|
14
|
Ihsan Ramdani
|
5
|
6,5
|
15
|
Lisna Wati
|
6
|
6,5
|
16
|
Irfan Maulana
|
7
|
8,5
|
17
|
Mi’raj
|
5
|
6
|
18
|
Neng Nia
|
6
|
6,5
|
19
|
Nenden Martiasari
|
4
|
6
|
20
|
Nurul Hiudayat
|
6,5
|
7
|
21
|
Rina Andrian
|
7
|
8
|
22
|
Risda Nuriah
|
6
|
6,5
|
23
|
Royani
|
5
|
8
|
24
|
Revi Pandina
|
5
|
6
|
25
|
Ridwan Jaelani
|
7
|
8,5
|
26
|
Siti Maryama
|
4
|
4,5
|
27
|
Siti Nur Azizah
|
5
|
8,5
|
28
|
Siti Aisyah
|
6
|
6
|
29
|
Silvi Susanti
|
4
|
7
|
30
|
Shopi Yanti
|
4
|
6,5
|
31
|
Sulaeman
|
4
|
6,5
|
32
|
Saepul Rohmat
|
4
|
4,5
|
33
|
Weni Hindayani
|
5
|
6,5
|
34
|
Yani Nuryanti
|
7
|
7,5
|
35
|
Yusup Maulana
|
7
|
8
|
36
|
Rina
|
6
|
7,5
|
37
|
Windi
|
6,5
|
8,5
|
38
|
Sandi Muhammad
|
5
|
6,5
|
39
|
Yana Suryana
|
5
|
6,5
|
40
|
Yogi
|
4
|
8,5
|
NO
|
Pree – Test (x)
|
Post – Test (y)
|
D
|
D2
|
1
|
5
|
5
|
0
|
0
|
2
|
4
|
6
|
2
|
4
|
3
|
4
|
6,5
|
2,5
|
6,25
|
4
|
5
|
5,5
|
0,5
|
0,25
|
5
|
5
|
5,5
|
0,5
|
0,25
|
6
|
7
|
7
|
0
|
0
|
7
|
6
|
8,5
|
2,5
|
6,25
|
8
|
4
|
4,5
|
0,2
|
0,25
|
9
|
7
|
8,5
|
1,5
|
2,25
|
10
|
6
|
7
|
0,5
|
1
|
11
|
6
|
6
|
0
|
0
|
12
|
6
|
7
|
1
|
1
|
13
|
6
|
6,5
|
0,5
|
0,25
|
14
|
5
|
6,5
|
1,5
|
2,25
|
15
|
6
|
6,5
|
0,5
|
0,25
|
16
|
7
|
8,5
|
1,5
|
2,25
|
17
|
5
|
6
|
1
|
1
|
18
|
6
|
6,5
|
0,5
|
0,25
|
19
|
4
|
6
|
2
|
4
|
20
|
5
|
6,5
|
1,5
|
2,25
|
21
|
6,5
|
7
|
1,5
|
2,25
|
22
|
7
|
8
|
1
|
1
|
23
|
6
|
6,5
|
0,5
|
0,25
|
24
|
5
|
8
|
3
|
9
|
25
|
5
|
6
|
1
|
1
|
26
|
7
|
8,5
|
1,5
|
2,25
|
27
|
4
|
4,5
|
0,5
|
0,25
|
28
|
5
|
8,5
|
3,5
|
12, 25
|
29
|
6
|
6
|
0
|
0
|
30
|
4
|
7
|
3
|
9
|
31
|
4
|
6,5
|
2,5
|
6,25
|
32
|
4
|
6,5
|
2,5
|
6,25
|
33
|
4
|
4,5
|
0,5
|
0,25
|
34
|
3
|
6,5
|
1,5
|
2,25
|
35
|
7
|
7,5
|
0,5
|
0,25
|
36
|
7
|
8
|
1
|
1
|
37
|
6
|
7,5
|
1,5
|
2,25
|
38
|
6,5
|
8,5
|
2
|
4
|
39
|
5
|
6,5
|
1,5
|
2,25
|
40
|
4
|
8,5
|
4,5
|
20,25
|
∑
x = 217
|
∑
y = 270,5
|
∑
D = 54,5
|
∑ D2 = 116,25
|
|
X = 5,43
|
Y = 6,77
|
D = 1,36
|
4.2 Statistical Computation.
a. n = 40
b. D = ∑ D
n
= 54,5
40
= 1,36
c. ∑ D2 = 116,25
d. (∑ D )2 = 54,52
e. ∑ D = 2970.25
= 74,26
f. n – 1 = 40 – 1
= 39
g. Count the Standard deviation
S=
n-1
39
=1.03
h.
= 6.32
i.
Count t - Value
= 1.36 x 6,3
1.03
= 8.59
1.03
= 8.34
j. Degree of freedom
d.f = (n – 1) = 39
k. t critical; value at 5% significance level for these
degree of freedom is 2.021, but the t observe = 8.34, the t
observe ⦣
t critical
4.3
Interpreting the result of
the computation
After the formulas and counting the result of the test, the
data of the research as follow:
a.
N = 40
b.
The – man of the pre test
and post test
)
c.
Standard deviations
S = 1.03 (see the appendix)
d.
T observe = 8.34
e.
Df = 39
f.
T critical for
the first test on the level significance 0,5 with degree of freedom 39 is 2.021
g.
We can observe now that t
observe is more than t critical, this
indicated that the differences between x and y is significant.
4.4
Testing Hypothesis
From the data computation above, the writer has found that
the value of the t observe is, 8.34. Thus, based on the significance
5 % and n = 40 the t is 2.021, the t observe t critical, its means that the hypothesis is
accepted. So, the kinds of activities can develop students’ speaking ability.
0 comments:
Post a Comment